LESSON No. 09
The CMP instruction sets the flags reflecting the relation of the destination to the source. This is important as when we say jump if above, then what is above what. The destination is above the source or the source is above the destination.

The JA and JB instructions are related to unsigned numbers. That is our interpretation for the destination and source operands is unsigned. The 16th bit holds data and not the sign. In the JL and JG instructions standing for jump if lower and jump if greater respectively, the interpretation is signed. The 16th bit holds the sign and not the data. The difference between them will be made clear as an elaborate example will be given to explain the difference.

One jump is special that it is not dependant on any flag. It is JCXZ, jump if the CX register is zero. This is because of the special treatment of the CX register as a counter. This jump is regardless of the zero flag. There is no counterpart or not form of this instruction.

The adding numbers example of the last chapter can be a little simplified using the compare instruction on the BX register and eliminating the need for a separate counter as below.

	
	Example 3.1

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017
	; a program to add ten numbers without a separate counter

[org 0x0100]

 mov bx, 0 ; initialize array index to zero

 mov ax, 0 ; initialize sum to zero

l1: add ax, [num1+bx] ; add number to ax

 add bx, 2 ; advance bx to next index

 cmp bx, 20 ; are we beyond the last index

 jne l1 ; if not add next number

 mov [total], ax ; write back sum in memory

 mov ax, 0x4c00 ; terminate program

 int 0x21

num1: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

total: dw 0

	006
	The format of memory access is still base + offset.

	008
	BX is used as the array index as well as the counter. The offset of 11th number will be 20, so as soon as BX becomes 20 just after the 10th number has been added, the addition is stopped.

	009
	The jump is displayed as JNZ in the debugger even though we have written JNE in our example. This is because it is a renamed jump with the same opcode as JNZ and the debugger has no way of knowing the mnemonic that we used after looking just at the opcode. Also every code and data reference that we used till now is seen in the opcode as well. However for the jump instruction we see an operand of F2 in the opcode and not 0116. This will be discussed in detail with unconditional jumps. It is actually a short relative jump and the operand is stored in the form of positive or negative offset from this instruction.

With conditional branching in hand, there are just a few small things left in assembly language that fills some gaps. Now there is just imagination and the skill to conceive programs that can make you write any program.

1.1. Unconditional Jump

Till now we have been placing data at the end of code. There is no such restriction and we can define data anywhere in the code. Taking the previous example, if we place data at the start of code instead of at the end and we load our program in the debugger. We can see our data placed at the start but the debugger is intending to start execution at our data. The COM file definition said that the first executable instruction is at offset 0100 but we have placed data there instead of code. So the debugger will try to interpret that data as code and showed whatever it could make up out of those opcodes.

We introduce a new instruction called JMP. It is the unconditional jump that executes regardless of the state of all flags. So we write an unconditional jump as the very first instruction of our program and jump to the next instruction that follows our data declarations. This time 0100 contains a valid first instruction of our program.

	
	Example 3.2

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019
	; a program to add ten numbers without a separate counter

[org 0x0100]

 jmp start ; unconditionally jump over data

num1: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

total: dw 0

start: mov bx, 0 ; initialize array index to zero

 mov ax, 0 ; initialize sum to zero

l1: add ax, [num1+bx] ; add number to ax

 add bx, 2 ; advance bx to next index

 cmp bx, 20 ; are we beyond the last index

 jne l1 ; if not add next number

 mov [total], ax ; write back sum in memory

 mov ax, 0x4c00 ; terminate program

 int 0x21

	003
	JMP jumps over the data declarations to the start label and execution resumes from there.

1.2. Relative Addressing

Inside the debugger the instruction is shown as JMP 0119 and the location 0119 contains the original first instruction of the logic of our program. This jump is unconditional, it will always be taken. Now looking at the opcode we see F21600 where F2 is the opcode and 1600 is the operand to it. 1600 is 0016 in proper word order. 0119 is not given as a parameter rather 0016 is given.

This is position relative addressing in contrast to absolute addressing. It is not telling the exact address rather it is telling how much forward or backward to go from the current position of IP in the current code segment. So the instruction means to add 0016 to the IP register. At the time of execution of the first instruction at 0100 IP was pointing to the next instruction at 0103, so after adding 16 it became 0119, the desired target location. The mechanism is important to know, however all calculations in this mechanism are done by the assembler and by the processor. We just use a label with the JMP instruction and are ensured that the instruction at the target label will be the one to be executed.

1.3. Types of Jump

The three types of jump, near, short, and far, differ in the size of instruction and the range of memory they can jump to with the smallest short form of two bytes and a range of just 256 bytes to the far form of five bytes and a range covering the whole memory.

[image: image1]
Near Jump

When the relative address stored with the instruction is in 16 bits as in the last example the jump is called a near jump. Using a near jump we can jump anywhere within a segment. If we add a large number it will wrap around to the lower part. A negative number actually is a large number and works this way using the wraparound behavior.

Short Jump

If the offset is stored in a single byte as in 75F2 with the opcode 75 and operand F2, the jump is called a short jump. F2 is added to IP as a signed byte. If the byte is negative the complement is negated from IP otherwise the byte is added. Unconditional jumps can be short, near, and far. The far type is yet to be discussed. Conditional jumps can only be short. A short jump can go +127 bytes ahead in code and -128 bytes backwards and no more. This is the limitation of a byte in singed representation.

Far Jump

Far jump is not position relative but is absolute. Both segment and offset must be given to a far jump. The previous two jumps were used to jump within a segment. Sometimes we may need to go from one code segment to another, and near and short jumps cannot take us there. Far jump must be used and a two byte segment and a two byte offset are given to it. It loads CS wit the segment part and IP with the offset part. Execution therefore resumes from that location in physical memory. The three instructions that have a far form are JMP, CALL, and RET, are related to program control. Far capability makes intra segment control possible.

1.4. Sorting Example

Moving ahead from our example of adding numbers we progress to a program that can sort a list of numbers using the tools that we have accumulated till now. Sorting can be ascending or descending like if the largest number comes at the top, followed by a smaller number and so on till the smallest number the sort will be called descending. The other order starting with the smallest number and ending at the largest is called ascending sort. This is a common problem and many algorithms have been developed to solve it. One simple algorithm is the bubble sort algorithm.

In this algorithm we compare consecutive numbers. If they are in required order e.g. if it is a descending sort and the first is larger then the second, then we leave them as it is and if they are not in order, we swap them. Then we do the same process for the next two numbers and so on till the last two are compared and possibly swapped.

A complete iteration is called a pass over the array. We need N passes at least in the simplest algorithm if N is the number of elements to be sorted. A finer algorithm is to check if any swap was done in this pass and stop as soon as a pass goes without a swap. The array is now sorted as every pair of elements is in order.

For example if our list of numbers is 60, 55, 45, and 58 and we want to sort them in ascending order, the first comparison will be of 60 and 55 and as the order will be reversed to 55 and 60. The next comparison will be of 60 and 45 and again the two will be swapped. The next comparison of 60 and 58 will also cause a swap. At the end of first pass the numbers will be in order of 55, 45, 58, and 60. Observe that the largest number has bubbled down to the bottom. Just like a bubble at bottom of water. In the next pass 55 and 45 will be swapped. 55 and 58 will not be swapped and 58 and 60 will also not be swapped. In the next pass there will be no swap as the elements are in order i.e. 45, 55, 58, and 60. The passes will be stopped as the last pass did not cause any swap. The application of bubble sort on these numbers is further explained with the following illustration.

[image: image2]
	
	Example 3.3

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028
	; sorting a list of ten numbers using bubble sort

[org 0x0100]

 jmp start

data: dw 60, 55, 45, 50, 40, 35, 25, 30, 10, 0

swap: db 0

start: mov bx, 0 ; initialize array index to zero

 mov byte [swap], 0 ; rest swap flag to no swaps

loop1: mov ax, [data+bx] ; load number in ax

 cmp ax, [data+bx+2] ; compare with next number

 jbe noswap ; no swap if already in order

 mov dx, [data+bx+2] ; load second element in dx

 mov [data+bx+2], ax ; store first number in second

 mov [data+bx], dx ; store second number in first

 mov byte [swap], 1 ; flag that a swap has been done

noswap: add bx, 2 ; advance bx to next index

 cmp bx, 18 ; are we at last index

 jne loop1 ; if not compare next two

 cmp byte [swap], 1 ; check if a swap has been done

 je start ; if yes make another pass

 mov ax, 0x4c00 ; terminate program

 int 0x21

	003
	The jump instruction is placed to skip over data.

	006
	The swap flag can be stored in a register but as an example it is stored in memory and also to extend the concept at a later stage.

	011-012
	One element is read in AX and it is compared with the next element because memory to memory comparisons are not allowed.

	013
	If the JBE is changed to JB, not only the unnecessary swap on equal will be performed, there will be a major algorithmic flaw due to a logical error as in the case of equal elements the algorithm will never stop. JBE won’t swap in the case of equal elements.

	015-017
	The swap is done using DX and AX registers in such a way that the values are crossed. The code uses the information that one of the elements is already in the AX register.

	021
	This time BX is compared with 18 instead of 20 even though the number of elements is same. This is because we pick an element and compare it with the next element. When we pick the 9th element we compare it with the next element and this is the last comparison, since if we pick the 10th element we will compare it with the 11th element and there is no 11th element in our case.

	024-025
	If a swap is done we repeat the whole process for possible more swaps.

Inside the debugger we observe that the JBE is changed to JNA due to the same reason as discussed for JNE and JNZ. The passes change the data in the same manner as we presented in our illustration above. If JBE in the code is changed to JAE the sort will change from ascending to descending. For signed numbers we can use JLE and JGE respectively for ascending and descending sort.

Near Jump

EB

Disp

EB

Disp Low

Disp High

EB

IP Low

IP High

CS Low

CS High

Short Jump

Far Jump

60

55

45

58

55

60

45

58

Yes

On

Yes

On

55

45

60

58

Yes

On

Off

55

45

58

60

45

55

58

60

Yes

On

No

On

45

55

58

60

No

On

Off

45

55

58

60

45

55

58

60

No

Off

No

Off

45

55

58

60

No

Off

Off

Pass 3

Pass 2

Pass 1

No more passes since swap flag is Off

Swap Done

Swap Flag

State of Data

